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We propose an adjoint-variable method for design sensitivity analysis of printed circuits and antennas
where allowable perturbations in the design parameters are of a discrete type. We extend previous work

on the sensitivity analysis of waveguide structures, where changes in the design parameters are stepwise,
on-grid volumetric perturbations. Here, we explore the feasibility of such an approach in the case of printed-
circuit board problems (with open boundaries) where perturbations relate to the shapes elements of infinitesimal
thickness. We propose a complex-variable formulation of our approximate sensitivity analysis that improves
its computational efficiency. The proposed technique offers significant increases in efficiency, accuracy, and
convergence when compared to traditional sensitivity-analysis techniques. Its implementation is straightforward.
The response and its gradient with respect to all possible design parameters are computed with at most two
full-wave analyses—of the original and the adjoint problems. It operates on a fixed discretization grid where
perturbations of grid nodes are not needed. We illustrate our technique through the sensitivity analysis of a
microstrip line and a probe-fed printed patch antenna as well as the optimization of a printed Yagi antenna
array.
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1. Introduction
In the design of microstrip antennas and printed
circuits, a designer can use simple and fast anal-
ysis approaches (models) such as transmission
line and cavity models (Sainati 1996), empiri-
cal formulas (Pozar 1993), and microstrip-element
libraries (Agilent Technologies 2000). However, these
approaches suffer from a number of limitations due
to the approximations that they introduce. These lim-
itations are overcome in the numerical full-wave elec-
tromagnetic (EM) solvers (EM simulators). EM solvers
are close numerical approximations of the basic EM
laws, e.g., the system of Maxwell’s equations, com-
plemented by the respective boundary conditions and
constitutive relations. These solvers are versatile with
respect to complex boundary shapes and materials.
The simulations typically feature good accuracy and
completeness of the solution. These advantages are,
however, at the expense of computational cost.
Currently, there is a great variety of numerical

algorithms for full-wave EM analysis. For the pur-
pose of sensitivity analysis, we classify the solvers
according to their discretization grid (see Figure 1) as:
(i) unstructured grid solvers (Figure 1a) and (ii) struc-
tured grid solvers (Figure 1b). Some of the popu-
lar solvers that are based on unstructured grids are
the method of moments (MoM) (Harrington 1968),

the finite-element method (FEM) (Jing 2002), the
finite-difference time-domain discrete surface integral
method (FDTD-DSI) (Madsen 1995), etc. Examples
in the category of structured grid solvers include
the time-domain transmission line method (TD-TLM)
(Christopoulos 1995), the frequency-domain transmis-
sion line method (FD-TLM) (Johns and Chritopoulos
1994), the FDTD method based on Yee’s (1966) cell,
etc. A major difficulty with structured-grid solvers in
sensitivity analysis is that perturbations in the shape
parameters can take only certain snapped-to-grid val-
ues from a discrete set conforming to the grid. In
contrast, with unstructured-grid solvers, the design
parameters can take an infinite number of values
within the acceptable design range.
The adjoint-variable method is an efficient tech-

nique for response sensitivity analysis, whose pur-
pose is to obtain derivatives (sensitivities) of the
response generated from the EM solver with respect
to all design parameters. The latter are typically
related to the shape and materials of the simulated
structure. The method provides the sensitivity infor-
mation through the solution of the original prob-
lem and what is called the adjoint problem. Thus, the
response and its derivatives are obtained through two
system analyses regardless of the number of design
parameters.
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(a)

(b)

Figure 1 Discretization Grids in and Around an Object (Dark Cells)
with a Numerical Solver

Notes. (a) Unstructured-grid discretization with triangular finite elements
and (b) structured-grid discretization with rectangular elements.

Traditionally, the adjoint-variable method for
design sensitivity analysis assumes the existence
of the analytical derivatives of the system matrix
with respect to the shape/material perturbations.
With such derivatives, the response sensitivity com-
putations are exact. While such derivatives may
be possible (although rather difficult) to obtain
with unstructured-grid solvers, they are simply not
available when the solver uses a structured grid.
These difficulties have prevented the use of adjoint-
based sensitivity analysis with full-wave EM solvers.
There is need in full-wave sensitivity analysis for
approaches, which are simple to implement and do
not require modification of the existing numerical
codes.
There have been few successful applications of

the traditional “exact” adjoint-variable method with
high-frequency full-wave EM solvers. Exact sensitiv-
ities were considered with the FEM by Akel and
Webb (2000), Lee et al. (1995), and Webb (2001, 2002),
where analytical derivatives of the FEM system matrix
with respect to the Cartesian coordinates of the mesh
vertices are obtained. An analogous technique was
used with the finite-element time domain (FETD) and
the FDTD-DSI method by Chung et al. (2000, 2001),
respectively.

Recently, approximate sensitivities were consid-
ered by Georgieva et al. (2002) for frequency-domain
solvers on unstructured grids and applications with
the MoM. There, the structure is rediscretized at each
design iteration for every design parameter to accom-
modate, at most, 1% to 2% parameter perturbations.
Analytical system matrix derivatives are not needed
since they are approximated via finite differences.
In previous work, we (Ali et al. 2004) proposed

a discrete finite-difference approach to adjoint-based
sensitivity analysis for waveguide structures simu-
lated with fixed-grid solvers. Here, we extend our
approach to printed circuits and open radiation
problems. The perturbations in the design parame-
ters include infinitesimally thin metallic plates. They
are realized by the metallization/demetalization of
a single face of the perturbation-related grid cells.
Our approach, whose complex-variable formulation
is developed here, uses system matrix differences
instead of their derivatives. A key feature of our
approach is that the difference-system matrix need
not be differentially small compared to the matrix
itself in order to ensure accurate sensitivity results.
These difference matrices are obtained by subtract-
ing two predefined system matrices, which cor-
respond to the original and perturbed systems.
Because of its adjoint-variable nature, the proposed
approach offers significant computational gain over
the traditional finite-difference approximations that
are applied directly at the level of the response.
Our approach is also advantageous when compared

with the traditional “exact” adjoint-variable method.
First, it does not require analytical derivatives of the
system matrix. Thus, cumbersome (and often case-
specific) analytical preprocessing is avoided. Second,
there is no need for the computation of K system
matrix derivatives, which is the major overhead with
exact sensitivity analysis. Third, the technique is
versatile—it accommodates all possible shape and
material changes, as long as they conform to the dis-
cretization grid. Last but not least, the implementation
of the proposed technique in existing numerical codes
is straightforward.
We start with a brief description of the FD-TLM

and its implementation with antenna problems in §2.
A discussion of sensitivity analysis and its limita-
tions with structured-grid solvers is given in §3. The
proposed discrete adjoint-variable method for printed
structures is described in §4. We illustrate the pro-
posed technique through numerical examples in §5.
Finally, conclusions are made in §6.

2. The FD-TLM for Printed Circuits
and Antennas

We illustrate our proposed technique with appli-
cations using the FD-TLM, which is a full-wave
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frequency-domain solver based on fixed structured
grids. With this solver, time-harmonic field depen-
dence is assumed and hence only space discretization
is required. The computational space is discretized
into rectangular cells (nodes) based on the sym-
metrical condensed node proposed by Johns and
Christopoulos (1994). Each node in the 3-D space has
12 transmission lines (links) that couple to the corre-
sponding links of the neighboring nodes. The scatter-
ing process is similar to that in the time-domain TLM
(Christopoulos 1995). An equation is written for each
link at each node in relation with the corresponding
incident voltages from the neighboring nodes and the
reflected voltages from the node itself. These voltages
are delayed through propagation factors of the type

e−�l�c (1)

where �l is the propagation constant of the lth link
and �c is the corresponding cell size. The propaga-
tion factor in (1) is a function of the frequency, the
local material properties, and the cell size. For the
particular case of a lossless medium modeled by a
uniform mesh of size �, �l = j�l where the phase con-
stants �l is

�l =
	
√

�

2
(2)

(Johns and Christopoulos 1994). Here, 	= 2�f0 where
f0 is the operating frequency; 
 = 
r
0 and � = �r�0
are the medium’s permittivity and permeability for
the respective link. The factor of 1/2 reflects the fact
that the length of the link is half of the cell size.
When the equations for all the links in all the cells

are put together, a complex linear system of equations
is obtained:

A�x� ·v=Vs� (3)

In (3), A is a 12N×12N (N is the total number of cells)
complex coefficient matrix, v is the vector of incident
voltages (the complex solution vector), and Vs is the
source vector. The matrix A is related to the param-
eters of the medium and the boundary conditions of
the problem. Thus, it is a function of the vector of
design parameters x, x = �x1 · · ·xK�T , where K is the
total number of design parameters. Responses used to
measure the performance of the system—such as the
transmission/reflection coefficients, input impedance,
etc.—are computed by post-processing the solution v.
Full-wave analysis of printed structures using the

FD-TLM is possible. The substrate is modeled by TLM
cells with constitutive parameters 
d and �d, which
are incorporated in the propagation factor �l of the
medium (1). Similarly, in the air, 
 = 
0 and � = �0.
The printed metallizations are modeled as infinitesi-
mally thin metallic plates. They have zero thickness
and they are located between the nodes, i.e., the inci-
dent voltages on the links in the normal y-direction
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Figure 2 Discretization Mesh of a Possible Printed Structure Modeled
with the TLM Nodes

(see Figure 2) are reflected back to the center of the
same cell with a reflection coefficient �e = −1. This
applies to the links of the cells above (in the air) and
below (in the dielectric) the metallic plate. The cells
in the air at the air-dielectric interface have a reflec-
tion coefficient �0d = �Zd − Z0�/�Zd + Z0�, where Zd =√
�d/
d is the intrinsic impedance of the substrate,
and Z0 =

√
�0/
0 is that of air. Likewise, the incident

voltages in the cells within the substrate at the air-
dielectric interface are reflected back with a reflection
coefficient �d0 = �Z0−Zd�/�Zd+Z0�.
The absorbing boundary conditions used to termi-

nate the computational domain are the zero reflection
termination (ZRT) boundaries proposed by Pasalic
et al. (1999). They simulate reflection-free wave propa-
gation and terminate our computational domain from
all sides except from the bottom side, where a ground
plane is placed. The ground plane is modeled as a
perfect conductor with �e = −1. Figure 2 illustrates
the FD-TLM computational domain for a printed
structure.

3. Sensitivity Analysis and Numerical
EM Solvers

The purpose of sensitivity analysis is to measure the
rate of change of a response function f with respect
to changes in a set of design parameters x. Mathe-
matically, the sensitivity is given by the gradient of f
with respect to x, i.e., �xf . This information is impor-
tant in a number of engineering applications such
as gradient-based optimization, yield, and tolerance
analysis.
Assume that f is a general scalar function that rep-

resents a response of interest for the linear system
in (3). This function may have an explicit dependence
on x, and an implicit dependence through the state
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variable v, i.e., f �x�v�x��. Our objective is to deter-
mine the sensitivity of the response f with respect
to x, i.e.,

�xf � subject to A ·v=Vs (4)

where �x is defined as a row operator

�x =
[

�

�x1
· · · �

�xK

]
� (5)

A simple technique toward the solution of (4) uses
finite differences applied directly to the response.
The first-order forward or backward approximations
require K + 1 full-wave simulations. A second-order
accurate estimation can be obtained using central
finite differences, which requires 2K + 1 system
analyses.
A more accurate and efficient technique is

the adjoint-variable method, which in contrast to
response-level finite differences, requires at most two
full-wave simulations to evaluate (4) regardless of K.
In the next sections, we present a brief background
of the original “exact” adjoint-variable method and
illustrate the limitations involved in its implementa-
tion with EM solvers based on structured grids such
as the FD-TLM.

3.1. Exact Sensitivities for Linear Problems:
Background

The complex system (3) can be represented as a real
system of the form

AR ·vR=VR
s (6)

where

AR =
[

�A �A
−�A �A

]
� vR =

[
�v

�v

]
� and

VR
s =

[
�Vs

�Vs

]
�

(7)

In (7), � and � denote the real and imaginary parts
of the corresponding matrix or vector. Notice that the
size of the real system (6) is twice that of the complex
system (3).
The exact adjoint-variable sensitivity expression

with respect to, for example, the kth design parame-
ter xk, is

df

dxk
= �f

�xk
+ ��R�T

[
�VR

s

�xk
− �AR

�xk
	vR

]
�

k= 1� � � � �K (8)

(Haug et al. 1986). The partial derivative �f /�xk rep-
resents the explicit dependence of f on xk; 	vR is a
constant vector representing the solution of (3) at the

current design; �AR/�xk is the derivative of the system
matrix with respect to xk; �VR

s /�xk is the derivative of
the excitation with respect to xk; and �R is the adjoint
vector ��R�T = �����T ����T �. It is the solution of the
adjoint problem defined as[

�A �A
−�A �A

]T [
��

��

]
= ���vf ��vf �

T � (9)

The right-hand term in (9) is referred to as the
adjoint excitation, which contains the derivatives of
the objective function with respect to the state vari-
ables. Once the solution vR in the original problem is
obtained, the sensitivity information with respect to
all K design parameters can be found after solving (9)
for the adjoint solution �R. In our implementation, we
assume that the original problem (6) has been solved.

3.2. Sensitivity-Analysis Limitations with
Structured-Grid Solvers

The major difficulty with the sensitivity expression (8)
in the case of structured grids is in finding the deriva-
tives of the system matrix with respect to changes in
the design parameters, i.e., �A/�xk, k= 1� � � � �K.
Consider the case where the design parameter xk

represents the length of the metallic printed patch
shown in Figure 3a, i.e., xk = L. Assume that we want
to accommodate a perturbation of �xk = �L in the
length L. One way to perturb is to stretch all the patch
cells uniformly by �xk/n (where n is the original num-
ber of cells in xk) in the z-direction. This, however,
also changes the location of the excitation (the probe)
from its original location at �x0� z0� to a new perturbed
location at �x0� z0 + �L/n�. The resulting problem is
different from the original one since the location of
the excitation point is now different (see Figure 3b).
This is not acceptable since the source location may
be a separate design parameter.
An alternative way to perturb is to assume local

discrete perturbations in xk, i.e., we assume that per-
turbations in xk take integer multiples of the cell size,
for example �xk =�c, in the respective direction. This
means that if xk = n�c = L is the original design-
parameter value, then the perturbed length is x

p

k =
�n + 1��c = L + �c (see Figure 3c). Thus, we keep
the mesh and the cell size unchanged, and we add
a whole cell to the end of the patch to accommodate
the perturbation. The effect of such a discrete pertur-
bation on the computation of the difference-system
matrices in the sensitivity formula is discussed in sub-
sequent sections.
To accommodate the assumed discrete type of per-

turbations, a new sensitivity expression is needed that
can include coarse stepwise changes in the system-
matrix coefficients. In the next section, we derive a
general sensitivity formula for perturbations of the
discrete type. We limit the discussion to linear sys-
tems. The technique is not limited to the FD-TLM.
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Figure 3 Illustration of a Perturbation �L in the Length of the Patch L (Top View) by Stretching the Cells in the Respective Direction vs. a Discrete
On-Grid Perturbation

Notes. (a) The original problem; (b) the stretched-cell perturbed problem; and (c) the discrete perturbed problem.

4. Approximate Sensitivities for
Printed-Antenna Problems

4.1. Real-System Representation
We restrict the perturbations in the design parameters
to the smallest on-grid perturbation of �xk. Accord-
ingly, the perturbed system matrix is A�x+ �xk · ek�,
where ek = �0� � � � � 1

kth
�0� � � ��T . The resultant complex

perturbed system of equations corresponding to (3)
becomes

Ak · 	vk =Vk� s� k= 1� � � � �K (10)

where Ak =A�x+�xk ·ek�, Vk� s =Vs�x+�xk ·ek� is the
excitation after the perturbation �xk takes place, and
	vk is the respective solution:

	vk = 	v+�vk� k= 1� � � � �K� (11)

Usually, the excitation is insensitive to changes in the
geometry and materials, in which case Vk� s is sim-
ply equal to Vs in the original unperturbed problem.

In (11), 	v is the solution of the original unperturbed
problem (3), and �vk is the change in the solution due
to �xk. In this real form, the kth perturbed system
solution 	vRk satisfies

AR
k · 	vRk =VR

k� s� k= 1� � � � �K (12)

where

AR
k =

[
�Ak �Ak

−�Ak �Ak

]
� 	vRk =

[
�	vk
�	vk

]
� and

VR
s�k =

[
�Vs� k

�Vs� k

]
� k= 1� � � � �K�

(13)

The approximate adjoint sensitivity in the case of a
real-valued objective function f and the system (12)
is given by Ali et al. (2004) and Bakr and Nikolova
(2003) as

df

dxk

 �f

�xk
+ ��R�T

[
�kVR

s

�xk
− �kAR

�xk
· 	vRk

]
�

k= 1� � � � �K� (14)
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As in (8), �f /�xk represents the explicit dependence
of f on changes in xk, and �R is the real-valued
adjoint variable vector, which is the solution of (9).
The remaining terms in (14) are the difference-system
matrix with respect to xk, �kAR = AR

k − AR, and the
difference in the excitation vector due to changes
in xk, �kVR

s =VR
k� s −VR

s .
The sensitivity expression (14) is approximate

because the difference-matrix ratio �kAR/�xk need
not be an actual representation of the analytical
derivative �AR/�xk. Whereas the exact formula (8)
fails due to inadequate approximation of �AR/�xk,
(14) gives excellent accuracy. The advantage comes
from the fact that in (14), 	vRk is the exact solution of
the “perturbed” original problem (12). In contrast, (8)
uses 	vR, which is an exact solution to the “unper-
turbed” system (6).

4.2. Complex-System Representation
In most EM problems, it is required to find the sen-
sitivity of a complex response f subject to a com-
plex linear system of equations. Then, two separate
sensitivity expressions in the form of (14), for �f
and �f , are used in conjunction with two separate
adjoint problems in the form of (9). Here, we derive
a more general complex-valued approximate sensitiv-
ity expression and show that as long as the complex
response function is an analytic function of the com-
plex state variable v, only one adjoint problem needs
to be solved.
The complex response f can be expressed as

f =�f + j�f (15)

where j =√−1. We apply an approach used to derive
the exact sensitivity formula for complex systems
and complex responses (Nikolova et al. 2004) to our
approximate real-valued expression (14). Using the
Cauchy-Riemann equations,

��v�f = ��v�f =��vf

−��v�f = ��v�f =��vf
(16)

we can show that the adjoint solution corresponding
to the sensitivity of �f , ���f �, relates to the adjoint
solution corresponding to the sensitivity of �f as

���f �= j���f � (17)

where � is the complex adjoint-variable vector � =
��+ j��; see (9). It is the solution to Nikolova et al.
(2004)

AH ·�= ��vf �
H (18)

where H denotes the conjugate transpose of the
respective matrix or vector, and �vf = ��vf − j��vf .

Accordingly, our complex discrete sensitivity expres-
sion is

df

dxk
= �f

�xk
+�H ·

[
�kVs

�xk
− �kA

�xk
	vk
]
�

k= 1� � � � �K� (19)
In (19), �kVs is the difference-complex-excitation vec-
tor due to �xk, and �kA is the difference complex
coefficient matrix in xk due to �xk.
The difference excitation vector �kVs can be easily

found using finite differences if the analytical deriva-
tive �Vs/�xk is not available. The difference matrix
�kA is mostly zeros except for those coefficients that
correspond to the set of links at changed bound-
aries due to �xk. As an example, if a node is at the
air-dielectric interface with � = �0d or �d0, then an
infinitesimally thin metallization of one face of the cell
changes � to � = �e =−1. In the case of demetalliza-
tion of a cell face, the respective reflection coefficient
will change from � = �e = −1 to � = �0d or �d0. The
advantages of such a “discrete” type of perturbations
are: (i) the perturbations in the design parameters are
local, and hence they do not affect other geometri-
cal details; (ii) the initial mesh is preserved during
the sensitivity analysis and hence, no remeshing is
needed during optimization; and (iii) there is no need
for the computation of the perturbed system matrix
for every perturbation since the affected coefficients in
the system matrix are predefined. Thus, computation
of �kA is done as the difference between two pre-
defined matrices—of the unperturbed and perturbed
in xk structures.
The elements of �vk, on the other hand, are not

known. However, since �kA is mostly zero, we need
to find only those elements of �vk that correspond to
the set of links, for example Li, which are related to
the nonzero �kA-coefficients. Based on the perturba-
tion theory (Harrington 1961), an approximation of
these �vk elements is developed through a mapping
of the field between the original and perturbed prob-
lems (Ali et al. 2004, Bakr and Nikolova 2003). The
numerical implementation of this concept is discussed
in more detail in the next section.
The proposed technique can be summarized in the

following steps:
1. Parameterization: Specify the set of links Li whose

corresponding A-coefficients are affected by the per-
turbations �xk, k= 1� � � � �K.
2. Original system analysis: (a) Solve the original sys-

tem (3); (b) store the incident voltages for all the links
in the set Li; (c) store the incident voltages in the
observation domain to be used in the computation of
the adjoint excitation (18).
3. Adjoint analysis: Solve the adjoint problem (18)

and store � in the locations that correspond to the
set Li and the nonzero elements of �kVs .
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4. Field mapping: Perform the mapping between the
solutions of the original problem and the perturbed
problem for the elements of �v that correspond to Li.
5. Sensitivities estimation: Evaluate the sensitivities

using (19) for all K parameters.

5. Numerical Implementation and
Examples

We illustrate implementation of the proposed discrete
technique through the sensitivity computations of a
microstrip line and a probe-fed printed patch antenna.
We also show the integration of our technique with
gradient-based optimization through the optimiza-
tion of an electromagnetically coupled microstrip Yagi
antenna array. The optimizer uses responses and their
sensitivities, which are computed with our discrete-
sensitivity analysis algorithm.

5.1. Characteristic Impedance of a Microstrip Line
The proposed technique is first tested with an ex-
ample where the sensitivity of the characteristic
impedance Zc of the microstrip line shown in Fig-
ure 4 is computed at 3 GHz. The excitation voltage is
depicted by the vertical arrows beneath the strip. The
permittivity of the substrate is 
r = 2�32. Its height is
h= 2 mm. The symmetry of the structure is used and,
thus, only half of it is simulated. The design param-
eter is the width of the line, i.e., xk = �W�, k= 1. The
derivative dZc/dW is computed in two different ways:
as a central finite difference (CFD) approximation and

x

y

z

h

Microstrip line

Ground plane

Substrate
Excitation

W

Figure 4 Microstrip Line: The Vertical Arrows Depict the Incident
Voltage Excitation

with our adjoint technique. The sensitivity of Zc is
evaluated in the range from W = 4� to W = 10�,
where � = 1 mm is the TLM grid size. In the CFD
estimation, for each W�i�, the simulator is invoked
twice to perform the forward and backward analyses
for W�i� ±�W�i�, where �W�i� = �. Thus, the �Zc/�W
derivatives are computed as

�Zc

�W

 Zc�W

�i� +�W�i��−Zc�W
�i� −�W�i��

2�
� (20)

In our discrete adjoint sensitivity estimation, the
sensitivity of Zc is evaluated using (19). The deriva-
tive of the excitation (see Figure 5) with respect to the
width of the microstrip line is computed with finite
differences:

�Vs

�W �i�

 Vs�W

�i� +�W�i��−Vs�W
�i��

�
� (21)

The difference-system matrix �WA is

�WA=A�W �i� +�W�i��−A�W �i��� (22)

In (22), both the original matrix A�W �i�� and the per-
turbed matrix A�W �i� +�W�i�� are already known.
The perturbed solution vector 	vW is approximated

using a one-to-one mapping between the perturbed
and the original field solution based on perturba-
tion theory (Harrington 1961). Thus, we avoid per-
forming K system analyses as suggested by (10)–(11).
An example is illustrated in Figure 6a. Consider the
approximated incident voltages �vW ≈ 	vk in the per-
turbed problem for W +�W . At x =W/2+�x, their
values under and above the metal strip are taken
equal to the corresponding incident voltages of the
unperturbed problem at x=W/2:

�vW �x=W/2+�x�= 	v�x=W/2�� (23)

In the case where the problem is simulated in full,
i.e., no symmetry is used, the mapping should be
done for both the left edge (at x = −W/2� and the

Original excitation with W

Changed excitation with W + ∆W

h
y

x

TLM mesh

Substrate

TLM cells
Ground plane

Figure 5 Perturbation of the Strip Width and the Associated Change in
the Excitation Vector Vs

Notes. Notice that the excitation voltage is now being added to the cells
beneath the “metalized” faces (dashed line).
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L + ∆L

h

y

x

TLM mesh

Substrate

TLM cells

y

x

h probe

h

z

y
probe

Ground plane

–(w/2+∆x),y +w/2+∆x,y–w/2,y +w/2,y

v–(w/2+∆x),y˜ v+w/2+∆x,y˜v–w/2,y v+w/2,y

y,L + ∆z y,L

(a)

(b)

(c)

ṽ ṽvv

ṽ v

Figure 6 Mapping of the Field: (a) for an Assumed Perturbation of the
Microstrip Width, �W ; (b) for an Assumed Perturbation in the
Patch Antenna WidthW ; and (c) for an Assumed Perturbation
in the Patch Antenna Length L

right edge (at x = +W/2� of the strip line to pre-
serve the symmetry of the structure with respect to
the observation point.
The discrete sensitivities are computed and com-

pared with the CFD derivatives as shown in Figure 7.
Good agreement is achieved. This trend shows that
the accuracy of the proposed adjoint technique is of
the same order as the CFD. Our technique, however,
is much more efficient.
For the case where the sensitivities are computed

with the CFD approximation, the gradient computa-
tion requires two additional matrix fills and two sys-
tem analyses per each W�i�. In our discrete-sensitivity
technique, only one additional system analysis of the
adjoint problem is required. The five full-wave sim-
ulations required to compute the Zc and �WZc using
CFD took 89.6 seconds compared to 31.2 seconds
using our discrete approach. These were measured on
a PC with a Pentium 4 3.0 GHz processor. The compu-
tational savings are more pronounced as the number
of design parameters increases �K > 1�. This is illus-
trated in our next examples.

4 5 6 7 8 9 10
–14,000

–12,000

–10,000

–8,000

–6,000

–4,000

–2,000

W (mm)

∂Z
c
/∂

W
(Ω

)

∆ = 1 mm

CFD
AVM

Figure 7 Objective Sensitivities of the Microstrip Line Example with
�= 1 mm for Different Values of W

5.2. Sensitivity of the Input Impedance for
a Printed Patch Antenna

In this example, we test the proposed technique
with the sensitivities of the real part of the input
impedance Rin of a printed patch antenna shown in
Figure 8 at 4.4 GHz. The patch is probe-fed at W/2
and L/4, where W and L are the physical width and
length, respectively. The thickness of the substrate
supporting the patch is h= 1�524 mm with permittiv-
ity 
r = 2�2. The computational domain is discretized
with a uniform TLM mesh of � = 1�524 mm. The
domain size is N = 35× 8× 29 nodes.
The sensitivity of Rin is computed with respect

to the physical length and width of the patch, i.e.,
�xRin = ��Rin/�L �Rin/�W�, and x = �L W�T . These
sensitivities are computed (i) as a finite-difference
approximation, and (ii) using our discrete-adjoint
technique.
The computation of �vk, k = 1� � � � �K, involves the

mapping of the field in the x-direction to accommo-
date perturbations in W (see Figure 6b) and in the
z-direction for the perturbations in L (see Figure 6c).
Figures 9 and 10 show a comparison between

the sensitivities computed with finite-difference
approximations—both CFD and forward finite dif-
ferences (FFD)—and with our discrete sensitivity

•

Dielectric substrate

Ground plane

Patch antenna

Probe feed

L

W
z

x

y

h

Figure 8 Probe-Fed Patch Antenna
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Figure 9 Sensitivities of the Patch Antenna at W = 19� for Different
Values of L

estimation for a sweep of the parameter L. The sen-
sitivities for a sweep in the parameter W are shown
in Figures 11 and 12, respectively. A good match is
obtained in both cases.
The simulation time required to compute Rin and

�xRin using a PC with a Pentium 4 3.0 GHz processor
was 1,522.3 seconds with CFD, 913.4 seconds with the
FFD, and 327.2 seconds with our discrete approach.
Notice that the accuracy of our computed derivatives
is comparable with that of the second-order CFD.
Hence, we achieve computational savings over the
CFD approximation of a factor of about 4.7 times for
K = 2.
5.3. Optimization of an Electromagnetically

Coupled Yagi Antenna Array
This example illustrates an application where sen-
sitivity information is used in antenna design.
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Figure 10 Sensitivities of the Patch Antenna at W = 19� for Different
Values of L
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Figure 11 Sensitivities of the Patch Antenna at L = 13� for Different
Values of W

We optimize the electromagnetically coupled Yagi
antenna array shown in Figure 13 using gradient-
based optimization. The optimization is carried out
using a minimax optimizer (Madsen et al. 2002). It is
integrated with our FD-TLM simulator and is sup-
plied with the Jacobian matrix computed once with
our discrete adjoint technique and a second time (in
a separate optimization) with FFD at the level of the
response.
The Yagi array consists of a driven element, a reflec-

tor, and two directors. The driven element is electro-
magnetically coupled to a feeding quarter-wavelength
line that is in turn coupled to a feeding microstrip
line. The array, its elements, and the ground plate are
assumed to be made of perfect conductors. The used
substrate has permittivity 
r = 10�2.
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Figure 12 Sensitivities of the Patch Antenna at L = 13� for Different
Values of W
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Figure 13 Electromagnetically Coupled Yagi Antenna Array
Notes. All units are in mm. (a) 3D geometry, (b) top layer, and (c) bottom
layer.

Our design specification is

�S11�<−10 dB for 9�7 GHz< f0 < 11.6 GHz (24)

where �S11� is the return loss of the antenna, which
we would like to minimize within the specified fre-
quency range. The vector of design parameters is
x= �x1 x2 x3�

T . It parameters have initial values xo =
�5�76 1�28 4�48�T mm. The design specification is met
in 14 iterations with optimal design parameters x∗ =
�7�68 2�56 3�2�T mm. The cost of each design iteration
is 23.4 min, using the derivatives computed from our
discrete technique, and 35.1 min when the derivatives
are computed using FFD at the level of the response.
Hence, the complete design process using our tech-
nique required about 5.46 hours while that with FFD
derivatives required 8.19 hours. The savings in com-
putation time for the same design outcome is obvi-
ous. The initial and optimal responses are given in
Figure 14.

6. Conclusions
We propose a novel numerical technique for sensitiv-
ity analysis intended for printed-circuit and antenna
structures simulated with fixed structured-grid full-
wave solvers. The geometrical changes are defined

0.9 1.0 1.1 1.2 1.3 1.4 1.5

× 1010

–35

–30

–25

–20

–15

–10

–5

Frequency (Hz)

|S
11

| (
dB

)

Optimal
Initial

Figure 14 The Initial and Optimal Responses ��S11�� vs. Frequency for
the Electromagnetically Coupled Yagi Antenna Array

as stepwise perturbations. Two full-wave simulations
are sufficient for computation of a response and its
sensitivities regardless of the number and nature
of the design parameters. The technique offers sav-
ing by, at least, a factor equal to the number of
design parameters, which in turn reduces the time
required by gradient-based optimization, statistical,
and yield analyses. Analytical derivatives of the sys-
tem matrix are not needed. The proposed technique
features simplicity and good accuracy. Its implemen-
tation with existing frequency-domain simulators is
straightforward. Our approach is illustrated through
sensitivity analysis and optimization of a number of
printed structures.
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